PFAS Analytical Methods – New Hampshire's Experience

October 10, 2018 **PFAS Analytical Methods Application, Comparison, and Lab Accreditation** Brandon Kernen, PG New Hampshire Department of Environmental Services

Presentation Overview

- 1) PFAS Sampling In New Hampshire
 - Public water systems
 - Other sites and media
- 2) ASDWA's Primer on Sampling for PFAS in Public Water Systems
 - Analytical options
 - Target analytes
 - Reporting limits
 - Identifying a qualified laboratory

- Causes for variability in results
- Interpreting data
- Sample collection procedures
- Development of new analytical methods

PFAS Regulation in NH

- Ambient Groundwater Quality Standard (clean-up and enforceable drinking water standard of 70 ppt for PFOA/PFOS combined (based on health criteria only)
- Per state law, must initiate rulemaking for MCLs by 1/1/19 for PFOA, PFOS, PFNA and PFHxS (considers health benefits, costs and technical feasibility)
- Per state law, must develop a plan and budget for developing surface water quality standards by 1/1/20
- Per state law, has clear authority to regulate air emissions to protect water quality

PFAS Sampling Timeline in NH

2014 – DoD / Superfund Sampling

(3 major water supply wells)

2016 – Sampling of wells around two air emissions sites

(1000+ wells)

Present – Statewide sampling (3000+ multimedia samples)

2013-2015 UCMR 3 (21 water systems / 80 sources)

Sampling for PFAS in NH

Groundwater at Wastewater Discharge Sites

Potential PFAS Sources/ Targeted Sampling

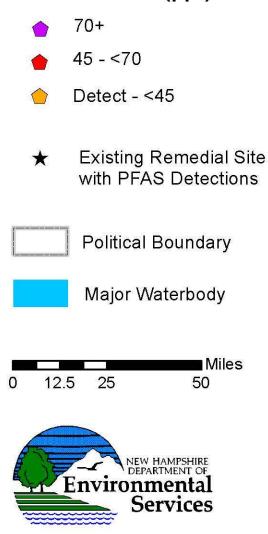
Wastewater/Biosolids

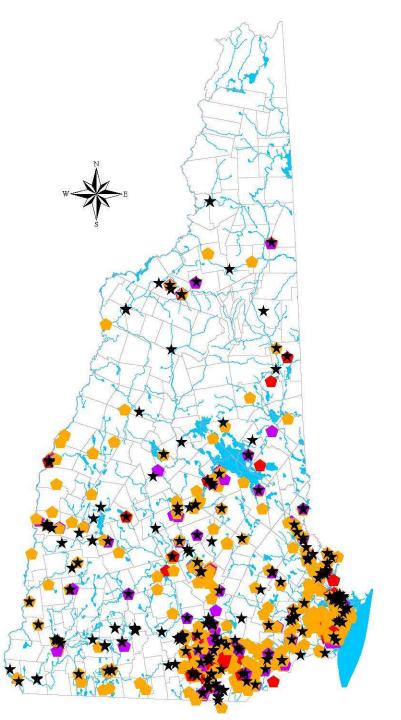
Public Water Systems Waste Sites Sampling

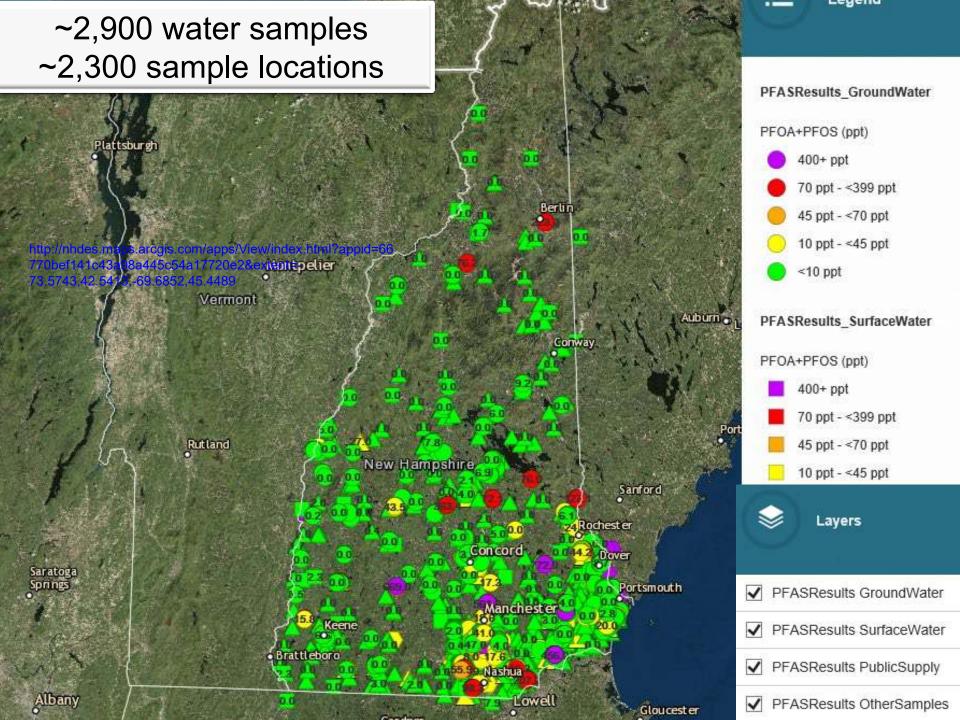
State-wide

Surface Water

Sampling

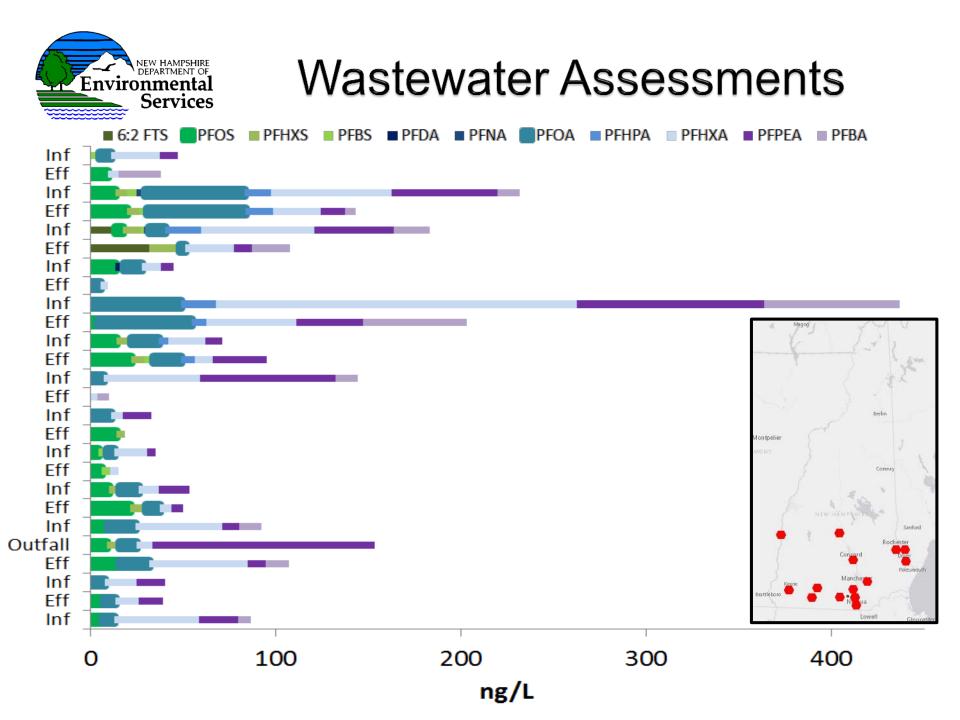

Air Emissions of W Publ

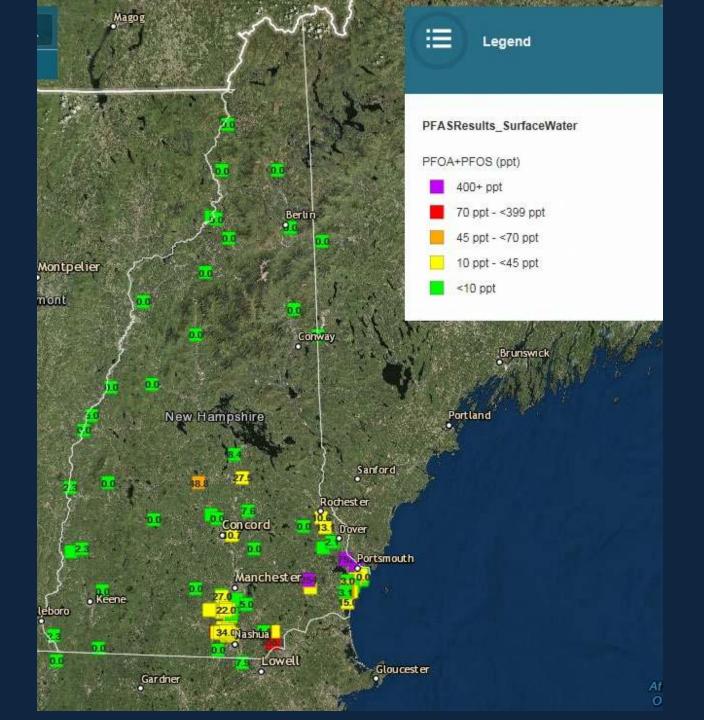

New Sources of Water for Public Water Systems



PFAS INVESTIGATION Updated: September 24, 2018

SAMPLES WITH PFAS DETECTS TOTAL PFAS (ppt)




Public Water System Sampling in New Hampshire

Combined PFOA & PFOS Result	Number of Public Water System Sources	Percentage			
Greater than 70 ppt	7	1.6%			
Greater than 60 ppt	9	2.1%			
Greater than 50 ppt	9	2.1%			
Greater than 40 ppt	10	2.3%			
Greater than 30 ppt	17	4.0%			
Greater than 20 ppt	32	7.5%			
Greater than 10 ppt	57	13.3%			
Greater than 5 ppt	73	17.0%			
Number of Sources Tested = 429					

Non Public Water System Samples

Site Type	# Sampled		Combined PFOA & PFOS > 70 ppt	Percentage Exceeding 70 ppt
Existing Waste Sites (non- petroleum)	92	79	51	54%
Existing Petroleum Sites				
Auto Salvage Yards	4	4	3	75%
Fuel Oil Bulk Storage	1	1	1	100%
Used Motor Oil Sites	1	1	1	100%
Residential Home Heating Oil Spills	2		0	0%
Gas Stations	2	2	0	0%
Landfills				
Unlined	87	83	40	46%
Lined	10	9	2	17%
Wastewater Discharge to Groundwater Sites	47	39	8	17%
Fire Departments	17	12	7	41%

Topic 1: Selecting an Analytical Method

1) EPA Method 537 Rev 1.1

Pros

- Only standard method used by commercial labs
- Method developed by USEPA
- Cost less than other methods

2) Isotope Dilution

Pros

- Considered the best method by many chemists
- Can be used for non-drinking water samples
- Can include more analytes than Method 537
- Makes corrections for matrix interference

Cons

- Includes only 14 analytes
- Not intended for nondrinking water samples
- Corrections are not made to account for matrix interference

Cons

- Cost more than Method 537
- Labs use their own proprietary method/method different from lab to lab

Topic 2: Finding a Qualified Laboratory

Laboratory Accreditation Programs

 National Environmental Laboratory Accreditation Program http://lams.nelac-institute.org/Search) by selecting a common PFAS chemical such as perfluorooctanoic acid (PFOA) under the "Analyte" pulldown tool; and

• The Department of Defense

https://www.denix.osd.mil/edqw/accreditation/accreditedlabs/ by selecting EPA 537 or "EPA 537 Mod" under the "Method" pull down tool.

 Some states may have their own accreditation or certification programs
Note: Isotope dilution is sometimes called "Method 537 Modified" even though it is completely different than Method 537

Other approaches to verify laboratory performance

- Periodically split samples and send to multiple laboratories
- Conduct double blind proficiency testing studies with labs you work with
- Request that the lab provides the results of historical proficiency testing

Topic 3: Which PFAS Chemicals Should Be Analyzed?

- Methods 537 includes up to 14 PFAS analytes (labs performing Method 537 do not always include all 14 compounds however)
- Isotope dilution includes up to 30 compounds
 - Many labs offer more than one testing packages
 - Options vary from lab to lab
- Six PFAS (PFOS, PFOA, PFNA, PFHxS, PFHpA and PFBS) were included in USEPA's UCMR3
- Three additional PFAS compounds are frequently detected (PFBA, PFPeA and PFHxA)

Topic 3: Which PFAS Chemicals Should Be Analyzed? (continued)

Benefits of using methods with an extended list of analytes

- Collect as much information as possible when sampling
- Assist with fingerprinting/segregating potential sources of contamination
- Future health studies may be completed and guidelines issued for additional PFAS compounds
- Some states are developing health guidelines using an additive approach/summing up the concentration of up to five PFAS compounds.

Challenges of using methods with an extended list of analytes

- The may be no health guidelines for some of the detected PFAS
- Cost per analysis may be higher
- More data processing and reporting

Discrepancies and Inconsistencies with Lab Reports

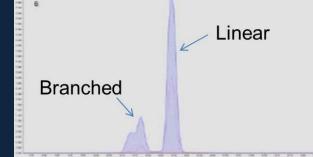
Lab reports and electronic data deliverables are problematic

- Different labs are reporting different forms of PFAS compounds same acronym but different properties (do not assume they are the same)
- Form of compound can affect the concentration reported
- Lab reports/electronic data deliverables contain mismatching CAS #s and chemical names/forms
- Creates havoc in data management and maintaining database integrity

EPA's health advisory & NHDES standards reference the acid form

Table 3-1. Basic naming structure and shorthand for perfluoroalkyl acids (PFAAs)

X	Y	Acronym	Name	Formula	CAS No.
O = octa carb (8 carbon) S = 3	A = Carboxylate or	PFOA	Perfluorooctanoate	C ₇ F ₁₅ CO ₂ -	45285-51-6
	carboxylic acid		Perfluorooctanoic acid	C7F15COOH	335-67-1
	S = Sulfonate or sulfonic acid	PFOS	Perfluorooctane sulfonate	C ₈ F ₁₇ SO ₃ ⁻	45298-90-6
			Perfluorooctane sulfonic acid	C ₈ F ₁₇ SO ₃ H	1763-23-1


http://pfas-1.itrcweb.org/wp-content/uploads/2017/10/pfas_fact_sheet_naming_conventions_11_13_17.pdf

Topic 4: What Reporting Limit Should Be Used?

- Reporting limits of at least 2-4 ng/L should be utilized
- Many labs performing isotope dilution achieve limits below 1 ng/L
- Method 537 has reporting limits ranging from 2.9-14 ng/L
- Benefits of low reporting limits
 - Improve utility of the data in the event health advisories are lowered and use an additive approach
 - Track concentration trends
 - Fingerprint source of contamination

Topic 5: Topic 5: Technical Issues that Cause Variability in Testing Results

- Linear and Branched Isomers
 - Prior to September 2016, Method 537 did not specify if branched isomers of PFOA should be measured and reported (some labs included it & others did not)
 - PFOA was produced by Dupont & 3M
 - PFOA from Dupont contained only linear isomers of PFOA
 - PFOA from 3M contained 70% linear & 30% branched isomers
 - Results from some samples analyzed prior to September 2016 may be underreported by 30% if contaminated with PFOA that was manufactured by 3M

Topic 5: Topic 5: Technical Issues that Cause Variability in Testing Results (continued) Expected Accuracy of Testing Results and Common Biases Based on NHDES' Experience

- Expected accuracy of analytical testing is +/-50% (higher than data from UCMR3 because high reporting limits were used)
- NHDES typically observed an accuracy of approximately -20% (biased low)
- NHDES split sample studies generally showed
 - Different labs reported similar results
 - Method 537 & isotope dilution reported similar results
- Occasional significant over reporting or under reporting occurred

Topic 5: Topic 5: Technical Issues that Cause Variability in Testing Results (continued)

- Standards do not exist for many PFAS with branched isomers labs estimate concentration using linear isomers
- Labs interpret branched isomers differently because the peaks on the chromatograph are less pronounced
- Certified standard from different vendors can cause results to vary by as much as 20%

ID	Analyte	Results Using Standard "A" Calibration Curve	Results Using Standard "B" Calibration Curve
		ppt	ppt
1	PFOA	59	79
2	PFOA	104	132
3	PFOA	50	70
4	PFOA	49	63
5	PFOA	61	76
6	PFOA	54	73
7	PFOA	86	136

Topic 6: Sample Collection Procedures

- Low detection limits combined with the widespread use of items with PFAS increases the potential for sampling errors
- However, drinking water sampling agents and operators are qualified to complete the sampling
- Sampling taps and plumbing should be free of materials containing Teflon
- Samplers should wear well laundered cotton clothing without the use of softeners
- Samplers should not wear cosmetics, moisturizers, hand cream and related products
- Avoid the use of traditional weatherproof field books/paper
- Samplers should wash hands and wear nitrile gloves
- Field blanks and trip blanks should be periodically used With each batch of samples or some other predetermined frequency

Topic 7: Interpretation of Results

- Compare results against USEPA's health advisory or state guidance – ITRC maintains a table of standards and guidance values for other states and countries.
- The detection of low levels of PFAS do not mean there is a major source of PFAS Contamination at low levels could be associated with:
 - Teflon in components of the plumbing system??
 - Chemical feed tanks/tubing??
 - Regional septic systems or other numerous and dispersed uses and releases of PFAS.
- Lab blanks, trip blank, field blanks and duplicates are especially important when assessing low-level detections